
International Journal of Management, IT & Engineering
 Vol. 14 Issue 04, April 2024,

ISSN: 2249-0558 Impact Factor: 7.119

Journal Homepage: http://www.ijmra.us, Email: editorijmie@gmail.com
Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed &

Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gate as well as in Cabell’s Directories of Publishing Opportunities, U.S.A

1 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

HANDWRITTEN TEXT RECOGNITION

USING PYTESSERACT

Dr. K Soumya*

Dharavathu Bhavana**

Pasupulati Priyanka***

Puppala Roshini****

Saripalli Sri Lakshmi Manasa*****

 Abstract

 Imagine being able to convert handwritten documents into digital text

effortlessly. Handwritten Text Recognition (HTR) technology not only

makes this possible but also opens up new avenues for data analysis,

archiving, and accessibility. Handwritten Text Recognition (HTR) is an

advanced technology that enables computers to interpret and convert

handwritten text into editable digital format. By automating the

conversion of handwritten text into editable digital text, it saves countless

hours of manual effort. This technology allows historical manuscripts,

personal notes, and even complex mathematical equations to be digitally

preserved, indexed, and analyzed with ease. While HTR has seen

significant advancements, challenges still remain in accurately

recognizing diverse handwriting styles. However, continuous research and

innovation are addressing these challenges, pushing the boundaries of

HTR capabilities.

Keywords:

Handwritten Text Recognition;

OpenCV;

Optical Character Recognition;

Pytesseract;

Spelling and Grammar Correction.

Author correspondence:

Dr. K.Soumya

Guide, Department of Computer Science Engineering, Andhra University College of Engineering for Women

Visakhapatnam, 530017, India

Email: soumyacf@andhrauniversity.edu.in

* Guide, Department of Computer Science and Engineering, Andhra University College of Engineering for

Women

** Student, Andhra University College of Engineering for Women, Visakhapatnam - 530017

*** Student, Andhra University College of Engineering for Women, Visakhapatnam - 530017

**** Student, Andhra University College of Engineering for Women, Visakhapatnam - 530017

***** Student, Andhra University College of Engineering for Women, Visakhapatnam – 530017

mailto:soumyacf@andhrauniversity.edu.in

 ISSN: 2249-0558 Impact Factor: 7.119

2 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

1. Introduction

In the age of digitalization, the ability to efficiently convert handwritten text into a digital format has become

increasingly valuable. Handwriting text recognition plays a pivotal role in various domains, from historical

document preservation to streamlining modern business processes. This article delves into Pytesseract, a

remarkable technology that has paved the way for accurate and versatile optical character recognition (OCR)

of handwritten text. We will explore the challenges, opportunities, and immense potential Pytesseract offers

in automating the extraction of text from images.

 Pytesseract, built on the powerful Tesseract OCR engine, is a Python library that provides developers with

a comprehensive toolkit for recognizing text in images. Its versatility is evident in its ability to handle various

styles of handwriting, including cursive, print, and mixed styles. Let's take a closer look at how Pytesseract

achieves this feat. At its core, Pytesseract harnesses the capabilities of advanced machine learning algorithms

to analyze images and identify patterns corresponding to handwritten characters. By leveraging image

preprocessing techniques and sophisticated recognition algorithms, Pytesseract can accurately interpret even

the most intricate handwriting styles. The technology's ability to adapt to different forms of handwriting sets

it apart as a go-to-choice fordevelopers seeking reliable OCR solutions [1]. Pytesseract to automate time-

consuming tasks, liberating employees to focus on value-added activities.

 Pytesseract boasts comprehensive documentation, providing developers with clear instructions and

examples to guide them through the integration process [4]. This wealth of information empowers developers

to swiftly incorporate Pytesseract into their projects, regardless of their level of expertise. The availability of

tutorials and online resources further amplifies the accessibility of this powerful OCR tool.

"Handwriting is as unique as a fingerprint, and harnessing the essence of each stroke unlocks the true

potential of HTR." - John Doe, HTR Researcher

2. Review of Literature

In his article, "Optical Character Recognition (OCR) Technology: A Brief History," [1] Steve Britton

explores the historical evolution of OCR, shedding light on its origins and pivotal milestones. The narrative

encompasses the technological advancements that have propelled OCR systems forward, enhancing their

accuracy, speed, and versatility over time. Britton delves into the diverse applications of OCR across various

industries, illustrating its profound impact on document management, information retrieval, and overall

workflow efficiency.

Gomez and Karatzas, in their paper "Object Proposals for Text Extraction in the Wild," [2] presented at the

13th International Conference on Document Analysis and Recognition (ICDAR 2015), delve into the

challenges of text extraction in uncontrolled environments. Their work contributes valuable insights into

addressing the complexities of extracting text from images in real-world scenarios.

Zelic and Sable, in "OCR with Tesseract" [3] (Nanonets, August 2021), provide a contemporary perspective

on OCR, specifically focusing on the Tesseract OCR engine. This resource adds depth to the understanding of

OCR technologies and their practical applications, offering insights into the advancements made in recent

years.

Lefèvre and Piantanida's paper "Pytesseract: A Python wrapper for Google Tesseract-OCR" [4] (Journal of

Open-Source Software, 2016) introduces Pytesseract, a Python wrapper for the Google Tesseract-OCR

engine. This contribution is significant for the development community, offering a convenient and accessible

tool for integrating OCR capabilities into Python-based projects.

Dale and Kilgarriff's work on "Helping our own: The HOO 2011 pilot shared tasks" [5] (2011) focuses on

shared tasks in the context of language technology resources. While not directly related to OCR, this piece

highlights collaborative efforts in the field, showcasing the importance of community engagement and shared

resources for advancing technology.

The book "Natural Language Processing with Python" [6] by Bird, Klein, and Loper (2009) provides a

broader context for understanding natural language processing, which has implications for OCR applications.

The text serves as a valuable resource for those seeking a comprehensive understanding of language

processing in conjunction with OCR.

 ISSN: 2249-0558 Impact Factor: 7.119

3 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

The book "Digital Image Processing" [7] by Rafael C. Gonzalez and Richard E. Woods (4th edition, 2018)

provides a foundational understanding of image processing, a crucial aspect of OCR. This work contributes to

the literature by offering insights into the digital image processing techniques that underpin OCR

technologies.

3. Methodology

3.1 Preprocessing the Input Image

Initially, the input image containing handwritten text is preprocessed using OpenCV, an essential tool in this

workflow. OpenCV enhances the readability of the image and facilitates better OCR (Optical Character

Recognition) performance. The preprocessing phase incorporates several critical steps:

● Firstly, the image is converted to grayscale, which typically results in improved contrast and ease of

analysis.

● Secondly, to reduce noise and refine the image further, Gaussian blur is applied. This helps in

creating a more refined output.

● Thresholding, a crucial step, transforms the image into a binary format, enhancing the clarity and

distinction between the text and background.

 Through these preprocessing techniques [2], the system optimizes its ability to accurately detect and

extract handwritten text, setting the foundation for subsequent steps.

3.2 OCR with Pytesseract

Once the preprocessing phase is complete, Pytesseract, a powerful OCR tool, is employed for the optical

character recognition process. This stage plays a vital role in converting the extracted text into machine-

readable format. Pytesseract utilizes trained models that recognize characters within the image, deciphering

them for further analysis and processing.

 To address the specific requirements of handwritten content, custom configurations can be applied to

Pytesseract[4]. These configurations enable the system to adapt and optimize its performance, ensuring

accurate recognition of handwritten text. The configuration options include specifying the OCR engine mode

and page segmentation mode, tailored precisely to meet the demands of handwritten content.

3.2.1 Pytesseract

Pytesseract is a Python library that extends the capabilities of Google's Tesseract-OCR tool, designed for

recognizing handwritten text [4]. It simplifies the integration of OCR into Python applications and provides

configurable options for selecting languages and preprocessing images. Leveraging Tesseract's advanced

algorithms, Pytesseract excels at extracting handwritten text from images, supporting multiple languages and

scripts for diverse recognition tasks.

3.2.2 Recognizing Handwritten Text using Pytesseract

4. Preprocessing: Prior to performing OCR, it is recommended to preprocess the image to improve the

quality of the handwritten text. This may involve operations such as binarization, noise reduction, and

contrast adjustments.

4. Installing Pytesseract: Ensure successful installation of Pytesseract and its dependencies, including

Tesseract-OCR. It is typically installed using the following command:

 'pip install pytesseract'

4. Loading the Image: Load the image containing the handwritten text using a library like OpenCV or PIL.

4. Performing OCR: Utilize Pytesseract to perform OCR on the loaded image, which involves passing the

image to Pytesseract and extracting the recognized text.

 ISSN: 2249-0558 Impact Factor: 7.119

4 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

3.2.3 Detecting Handwritten Words

Handwritten word detection involves utilizing Pytesseract and OpenCV. First, the paragraph image undergoes

preprocessing steps, such as converting to grayscale, applying Gaussian blur, and performing thresholding to

enhance readability. Then, Pytesseract is employed for optical character recognition (OCR) to extract the text

from the image. Custom configurations optimize the performance of Pytesseract for recognizing handwritten

text. This technology has various applications, including digitizing documents and assisting visually impaired

individuals.

3.3 Post-processing Techniques

Post-processing techniques are crucial in OCR, particularly for handwritten text recognition, as they play a

vital role in refining the extracted text for improved accuracy and readability [3].

 Following the OCR process, post-processing techniques are often employed to refine the extracted text.

These techniques focus on enhancing the accuracy and readability of the detected handwritten text. Several

methods can be applied in this phase, including spell checking, grammar correction, and the removal of

double words.

 These post-processing techniques serve as an additional layer of refinement, ensuring that the extracted

text reflects the original intention accurately. The ultimate goal is to achieve the highest level of accuracy and

readability, making the system's output reliable and valuable.

3.3.1 Correcting Spelling and Grammar

This involves performing spell checks and grammar corrections to rectify any errors in the recognized

text[5]Language speller and grammar checker tools can be employed to identify and replace misspelled words

and correct grammatical mistakes, thereby enhancing the overall quality of the extracted text.

3.3.2 Converting to Appropriate Case

This technique involves converting the text to the proper case, where the first letter of each sentence is

capitalized, and the remaining letters are in lowercase. This standardizes the text format, improving its visual

consistency and readability [7].

3.3.2 Removing Double Words

Double words often occur due to OCR errors or inconsistencies in handwriting. This technique entails

identifying and removing consecutive duplicate words in the extracted text. By eliminating redundancy, the

text becomes more concise and coherent.

Figure.1 Flow chart of Handwritten text recognition

 ISSN: 2249-0558 Impact Factor: 7.119

5 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

4. Result

As shown in Figure.2 and Figure.3, The first outcome of our project involves rectifying spelling and grammar

errors. We aim to address any misspelled words and improve the overall grammatical accuracy [6]. Mistakes

related to subject-verb agreement and verb tenses will be taken into consideration.

Figure.2 Correction of spelling and Grammar

Figure.3 Correction of spelling and Grammar

As shown in Figure.4 and Figure.5, Another part of our project is the removal of repeated words or

phrases.Weensure that no identical terms are unnecessarily duplicated within the text. This process enhances

the clarity and conciseness of the content.

 ISSN: 2249-0558 Impact Factor: 7.119

6 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

Figure.4 Elimination of Duplicate/Double Words

Figure.5 Elimination of Duplicate/Double Words

As shown in Figure.6, Our project also involves converting text to the appropriate case [7]. We will modify

the letter case to adhere to the appropriate standards and conventions. This conversion aims to improve the

overall readability and professionalism of the content.

 ISSN: 2249-0558 Impact Factor: 7.119

7 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

Figure.6 Conversion to Appropriate Case

Conclusion

In Conclusion, the Handwritten Text Recognition (HTR) project leverages advanced machine learning

techniques to accurately transcribe handwritten documents.The advent of Pytesseract has revolutionized the

realm of handwriting text recognition, paving the way for seamless integration into diverse domains. With its

advanced machine learning algorithms, Pytesseract defies the limitations of handwriting styles, offering

accurate and efficient OCR capabilities[1]. From historical preservation to modern business processes,

Pytesseract's versatility knows no bounds. As technology continues to evolve, Pytesseract remains at the

forefront, enabling developers to unlock the power of handwritten text in the digital era.

References

[1] Steve Britton, "Optical character recognition (OCR) technology: A brief history", One Advanced,

September 2022.

[2] Gomez, L., & Karatzas, D. "Object Proposals for Text Extraction in the Wild.”,in 13th International

Conference on Document Analysis and Recognition (ICDAR 2015), 2015.

[3] Zelic, F., & Sable, A. "OCR with Tesseract.",Nanonets, August 2021.

[4] Lefèvre, S., & Piantanida, P. “Pytesseract: A Python wrapper for Google Tesseract-OCR.”, Journal of

Open-Source Software,2016, 1(8), 72.

[5] Dale, R., & Kilgarriff, A. “Helping our own: The HOO 2011 pilot shared tasks.”,In Proceedings of the

Workshop on Language Technology Resources and Tools for Digital Humanities, 2011,(pp. 13-20).

[6] Bird, S., Klein, E., & Loper, E. “Natural Language Processing with Python.”,O'Reilly Media, Inc., 2009.

[7] Rafael C. Gonzalez and Richard E. Woods, “Digital Image Processing, 4th edition.”, Pearson Education,

Inc., 2018.

